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Optimal analysis on the performance of an irreversible harmonic quantum Brayton
refrigeration cycle
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An irreversible model of a quantum refrigeration cycle working with many noninteracting harmonic oscil-
lators is established. The refrigeration cycle consists of two adiabatic and two constant-frequency processes.
The general performance characteristics of the cycle are investigated, based on the quantum master equation
and the semigroup approach. The expressions for several important performance parameters such as the
coefficient of performance, cooling rate, power input, and rate of entropy production are derived. By using
numerical solutions, the cooling rate of the refrigeration cycle subject to finite cycle duration is optimized. The
maximum cooling rate and the corresponding parameters are calculated numerically. The optimal region of the
coefficient of performance and the optimal ranges of temperatures of the working substance and times spent on
the two constant-frequency processes are determined. Moreover, the optimal performance of the cycle in the
high-temperature limit is compared with that of a classical Brayton refrigerator working with an ideal gas. The
results obtained here show that in the high-temperature limit a harmonic quantum Brayton cycle may be
equivalent to a classical Brayton cycle.
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I. INTRODUCTION

The harmonic oscillator and spin systems are two typ
mechanical systems in quantum physics and have b
widely applied to all kinds of practicaly physical problem
since the beginning of quantum theory. Recently, several
thors have intensively investigated the performance cha
teristics of quantum thermodynamic cycles working w
harmonic oscillator systems@1–6# or spin systems@7–12#,
based on the quantum master equation and the semig
approach. Many meaningful conclusions have been obtai
Quantum thermodynamic cycles have become an interes
research subject. Investigation of the performance of qu
tum thermodynamic cycles has been a major source of t
modynamic insight and led to a connection between abst
theory and realizable physical phenomena. Quantum mo
of thermodynamic cycles show a remarkable similarity
classical thermodynamic cycles obeying macroscopic
namics. The investigation of them will be helpful to deep
understand the relationship and distinguish between
quantum and classical thermodynamic cycles.

Like classical thermodynamic cycles, quantum thermo
namic cycles using harmonic oscillator or spin systems as
working substance may have different typical cycle mode
For example, when harmonic oscillator systems are use
the working substance, we have the quantum Carnot c
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@2,3,5,6# consisting of two isothermal and two adiabatic~i.e.,
constant-population! processes, the Ericsson cycle consisti
of two isothermal and two constant-frequency proces
@1,4#, the Brayton cycle consisting of two adiabatic~i.e.,
constant-population! and two constant-frequency processe
etc. The quantum Carnot cycle, Ericsson cycle, and Bray
cycle are obviously three models of the most important qu
tum thermodynamic cycles working with harmonic oscillat
systems. The optimal performance of the quantum Car
cycle and Ericsson cycle has been investigated and m
significant results have been obtained@1–6#. However, so far
the optimal performance of the quantum Brayton refrige
tion cycle working with harmonic oscillator systems h
rarely been studied. Thus, it is of great significance to stu
the optimal performance of this class of quantum thermo
namic cycles. It is also worthwhile to point out that a simil
cycle model, which consists of two adiabatic~i.e., constant-
polarization! and two isomagnetic field processes, has be
used to analyze the performance of an irreversible quan
refrigeration cycle working with many noninteracting spi
1/2 systems, and many significant results have been obta
@9#. Because the cycle working substance adopted her
different from that used in Ref.@9#, it may be expected tha
some results different from those derived in Ref.@9# will be
obtained.

In this paper, the optimal performance of a quantum
frigeration cycle working with many noninteracting ha
monic oscillators and consisting of two adiabatic and t
constant-frequency processes is investigated, based on
dynamical semigroup approach of the quantum theory
open systems. The general expressions for several impo
parameters, such as the coefficient of performance, coo

ic
©2003 The American Physical Society17-1
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rate, power input, and rate of entropy production, are
rived. The important performance parameters are optimi
and the general performance characteristics of the cycle
analyzed. The optimaly operating regions of some import
performance parameters of the cycle are determined.

II. A QUANTUM CYCLE MODEL

Figure 1 shows schematically thev-n diagram of an ir-
reversible quantum refrigeration cycle operating betwe
two heat reservoirs at temperaturesTh and Tc . The refrig-
eration cycle consists of two adiabatic and two consta
frequency processes. The working substance of the cyc
composed of many noninteracting harmonic oscillators.
convenience, throughout this paper ‘‘temperature’’ will ref
to b rather thanT. In the cycle, two adiabatic processes a
connected by two constant-frequency processesv5v1 and
v5v2 with v2.v1 . The two constant-frequency process
in the harmonic quantum refrigeration cycle correspond
the two constant-pressure processes in a gas Brayton re
eration cycle, while the two adiabatic processes in the cy
are identical to two processes where the populations of
harmonic oscillatorsn5n1 and n2 are kept constant@3#.
Thus, the quantum refrigeration cycle shown in Fig. 1 m
be referred to as the harmonic quantum Brayton refrigera
cycle.

In the two constant-frequency processes, the oscilla
are, respectively, coupled to the heat reservoirs at cons
temperaturesb5bh and b5bc , and the amounts of hea
exchange between the working substance and the heat r
voirs are represented byQh andQc . Due to the finite rate of
heat transfer between the working substance and the
reservoirs, the temperaturesb1 , b2 , b3 , and b4 of the
working substance in states 1, 2, 3, and 4 are different fr
those of the heat reservoirs and there is a relationb1.b2
>bc.bh>b4.b3 . For a harmonic oscillator system
Bose-Einstein condensation~BEC! must be considered. Con
sequently, the lowest temperatureb1 of the working sub-
stance must be restricted to being higher than the crit
temperature of BEC of the harmonic oscillators.

III. THE COEFFICIENT OF PERFORMANCE
AND WORK INPUT

Based on statistical mechanics, the population of the
cillators n can be obtained from the Bose-Einstein distrib
tion @13#, i.e.,

β
h

β
cω

c

ω
h

n

ω

n
1

n
2

ω
1

ω
2

Q
h

Q
c

1 2

34

FIG. 1. Thev-n diagram of an irreversible harmonic quantu
refrigeration cycle, wherev is in joules.
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1

exp~b8v!21
, ~1!

wherev.0 is the frequency of the oscillator,b851/T, and
T is the absolute temperature in energy units. Using Eq.~1!
and Fig. 1, one can obtain the following relations:

b1v15b4v2 ~2!

and

b2v15b3v2 . ~3!

It is thus clear that for a harmonic quantum Brayton refr
eration cycle there is an important relationb1 /b25b4 /b3 ,
which restricts the temperatures of the four states 1, 2, 3,
4 in Fig. 1. It is of interest to note that this important relatio
is identical with that of a Brayton refrigeration cycle workin
with an ideal gas.

For a harmonic oscillator system, the Hamiltonian is d
scribed in the following form@3,14#:

Ĥ~ t !5v~ t !N̂5v~ t !â†â, ~4!

where â† and â are the bosonic creation and annihilatio
operators andN̂5â†â is the number operator. The intern
energy of the harmonic oscillator system is of the expec
tion value of the Hamiltonian, i.e.,

E5^Ĥ&5v~ t !^N̂&5v~ t !n, ~5!

where^N̂&5n. For a harmonic quantum refrigerator, the i
ternal energy of the working substance may be changed
changing either the frequency or the population of the os
lators. The cycle operation is followed by changes in t
observables of the working substance. Based on the s
group formalism@3,15#, the equation of motion of an opera
tor X̂ in the Heisenberg picture is given by the quantu
master equation@3,12,15–17# ~throughout this paper we
adopt\51 for simplicity!, i.e.,

dX̂

dt
5 i @Ĥ,X̂#1

]X̂

]t
1LD~X̂!, ~6!

where LD(X̂)5(aga(V̂a
† bX̂,V̂ac1 bV̂a

† ,X̂cV̂a) is a dissipa-
tion term and originates from the thermal coupling betwe
the working substance and the heat reservoir,ga are phe-
nomenological positive coefficients, andV̂a

† and V̂a are op-
erators in the Hilbert space of the system and are Hermi
conjugates. For a harmonic oscillator system,V̂a

† and V̂a

may be chosen to be the bosonic annihilation and crea
operatorsâ† andâ. SubstitutingX̂ in Eq. ~6! by Ĥ and using
Eq. ~5!, one obtains the rate of change of the internal ene
as
7-2
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dE

dt
5

d

dt
^Ĥ&5K ]Ĥ

]t L 1^LD~Ĥ!&

5^N̂&
dv

dt
1v^LD~N̂!&5n

dv

dt
1v

dn

dt
. ~7!

It is thus clear that Eq.~7! is the time derivative of the firs
law of thermodynamics@3,16–19# for a harmonic oscillator
system. Comparing Eq.~7! with the differential form of the
first law of thermodynamics,dE/dt5dW/dt1dQ/dt, one
can identify the instantaneous power and heat flow@3,18,19#
as

P5
dW

dt
5K ]Ĥ

]t L 5n
dv

dt
~8!

and

dQ

dt
5^LD~Ĥ!&5v

dn

dt
. ~9!

Using Eqs.~1! and ~9!, one can find that the amounts o
heat exchange in the two constant-frequency processes o
cycle are given, respectively, by

Qc5Q125E
1

2

dQ5E
n1

n2
v1dn5v1~n22n1!

5
v1~eb4v22eb2v1!

~eb4v221!~eb2v121!
~10!

and

Qh5Q345E
3

4

dQ5E
n2

n1
v2dn

5v2~n12n2!5
v2~eb2v12eb4v2!

~eb4v221!~eb2v121!
. ~11!

When a cycle is finished and the working substance
turns to the original state, the change of internal energ
equal to zero, i.e.,rdE50. The work input per cycle isW
5rndv52rdQ52rvdn. Using Eqs.~10! and ~11!, one
can obtain the work input per cycle as

W5uQh1Qcu5~v22v1!~n22n1!

5
~v22v1!~eb4v22eb2v1!

~eb4v221!~eb2v121!
. ~12!

From Eqs.~10! and ~12!, we can derive the coefficient o
performance of a quantum Brayton refrigeration cycle wo
ing with harmonic oscillators as

«5
Qc

W
5

v1

v22v1
. ~13!
05611
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IV. CYCLE PERIOD

In order to analyze further the optimal performance of t
harmonic quantum Brayton refrigeration cycle, the period
the cycle has to be calculated. For this end, we begin to s
the equation of motion that determines the time evolution
the populations of the harmonic oscillators. Substitutingâ†,
â, Ĥ, andX̂5N̂ into Eq. ~6!, one can prove@3# that

dn

dt
522aeqbv@~ebv21!n21#, ~14!

where a.0, 21,q,0, and b, v, and n are, in general,
dependent on time@3#. The explicit quantum mechanical na
ture of a refrigerator working with harmonic oscillators
manifested by the dual character ofv, i.e.,\v ~\51! defines
the energy level structure of the refrigeration cycle andv is
the frequency of the oscillators so thatv21 defines an intrin-
sic time scale. This implicitly assumes an instantaneous
sponse of the heat reservoir to changes in the frequencv,
and the time duration of a process should be long enoug
that resonance conditions are established instantaneo
This means that the time duration for each process has t
much larger than the intrinsic time scale@3#. Thus, the
change ofv with time is small. This point can also be d
rectly obtained from Eq.~1!.

Using Eq.~14!, one can obtain the expression for the tim
evolution as

t52
1

2a Eni

nf dn

eqbv@~ebv21!n21#
, ~15!

whereni andnf are the initial and final values ofn along a
given pathn(b8,v). Equation~15! is a general expression o
the time evolution for a harmonic oscillator system coup
with a heat bath.

According to Eq.~15!, one can calculate the time of th
heat-exchange process between the working substance
the heat reservoir. Substitutingn(b8)51/(eb8v121), b
5bc , ni5ni(b1 ,v1), andnf5nf(b2 ,v1) into Eq.~15! and
using Eqs.~2! and ~3!, we can obtain the time spent on th
constant-frequency process withv5v1 as

t15
1

2aeqbcv1 Eb1

b2 d~eb8v1!

~eb8v121!~ebcv12eb8v1!
5C1 ln A,

~16!

where A5 (eb2v121)(ebcv12eb4v2)/(eb4v221)(ebcv1

2eb2v1) and C151/@2aeqbcv1(ebcv121)#. Similarly, sub-
stitutingn(b8)51/(eb8v221), b5bh , ni5ni(b3 ,v2), and
nf5nf(b4 ,v2) into Eq. ~15! and using Eqs.~2! and~3!, we
can obtain the time spent on the constant-frequency pro
with v5v2 as

t25
1

2aeqbhv2 Eb3

b4 d~eb8v2!

~eb8v221!~ebhv22eb8v2!
5C2 ln B,

~17!
7-3



o
s
tw

er

ng
ls
th

Us
s

e
tu

ic

th
,
lu

er

e

ng
se

a
t

e
f

and

he
in

ig.
f

e-

-

B. LIN AND J. CHEN PHYSICAL REVIEW E68, 056117 ~2003!
where B5 (eb4v221)(ebhv22eb2v1)/(eb2v121)(ebhv2

2eb4v2) and C251/@2aeqbhv2(ebhv221)#. It can be seen
from Eq. ~9! that in two adiabatic processes the amounts
heat exchange between the working substance and the
roundings are equal to zero and the times spent on the
adiabatic processes are negligible@12# compared with the
constant-frequency processes. Consequently, the cycle p
is given by

t5t11t25C1 ln A1C2 ln B. ~18!

V. OPTIMIZATION ON PERFORMANCE PARAMETERS

In addition to the coefficient of performance, the cooli
rate, power input, and rate of entropy production are a
three of the important parameters often considered in
optimal design and theoretical analysis of refrigerators.
ing Eqs.~10!–~12! and~18!, we can find that the expression
for the cooling rateR, power inputP, and rate of entropy
productions are, respectively, given by

R5
Qc

t
5

v1~eb4v22eb2v1!

~eb2v121!~eb4v221!~C1 ln A1C2 ln B!
,

~19!

P5
W

t
5

~v22v1!~eb4v22eb2v1!

~eb2v121!~eb4v221!~C1 ln A1C2 ln B!
,

~20!

and

s5
DS

t
5

~bhv22bcv1!~eb4v22eb2v1!

~eb2v121!~eb4v221!~C1 ln A1C2 ln B!
.

~21!

With the help of the above equations, one can optimize th
important performance parameters of the harmonic quan
Brayton refrigeration cycle.

It is clearly seen from Eqs.~13! and~19! that the cooling
rate is zero when«50 or «5« r , where« r5vc /(vh2vc) is
the maximum coefficient of performance of a harmon
quantum Brayton refrigeration cycle and the frequenciesvc
andvh are, respectively, the upper and lower bounds of
frequenciesv1 and v2 of the oscillators. This implies that
when the coefficient of performance is equal to some va
the cooling rate has a maximum. Using Eq.~19! and the
extremal condition]R/]v150, we can obtain the following
equation:

t

C1bc
2v1H ~n22n1!ebcv1

@n1~ebcv121!21#@n2~ebcv121!21#

2
~q11!ebcv12q

~ebcv121!
ln AJ 50. ~22!

Equation~22! gives the optimal relation betweenb2(v1) and
b4(v2) for given q, bh , bc , vh , and vc , but it is too
complicated to yield a simple analytical solution. Howev
for given q, bh , bc , vh , andvc , the R* 2«, P* 2«, R*
2P* , s* 2«, and b i /b j2« characteristic curves can b
05611
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plotted by using Eqs.~13! and ~19!–~22!, as shown in Figs.
2–6, where R* 5R/(2avc), P* 5P/(2avc), and s*
5kThs/(2avc) are, respectively, the dimensionless cooli
rate, power input, and rate of entropy production. In the
figures, the parameterskTh52.0J, kTc51.0J, vh52.05J,
vc51.0J, andq520.5 are adopted@19#.

It is seen from the curves in Fig. 2 that there exists
maximum cooling rateRmax and a corresponding coefficien
of performance«m for a set of given parametersq, bh , bc ,
vh , andvc . Obviously, for different given parameters, th
maximum cooling rateRmax and corresponding coefficient o
performance«m will be different. For example, for given
vc /vh , the larger is the temperature ratioTc /Th of the two
heat reservoirs, the larger are the maximum cooling rate
corresponding coefficient of performance; for givenTc /Th ,
the lower is the frequency ratiovc /vh of the oscillators, the
larger is the maximum cooling rate while the lower is t
corresponding coefficient of performance, as indicated
Table I.

On the other hand, it is also seen from the curves in F
2 that whenR,Rmax there are two different coefficients o
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FIG. 2. The dimensionless cooling rateR* 5R/(2avc) versus
the coefficient of performance« for the parameterskTh52.0J, vh

52.05J, vc51.0J, andq520.5. Dashed and solid curves corr
spond to the cases ofkTc50.9J andkTc51.0J, respectively.
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FIG. 3. The dimensionless power inputP* 5P/(2avc) versus
the coefficient of performance«. The values of the relevant param
eters are the same as those used in Fig. 2.
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performance for a given cooling rateR, where one is larger
than«m and the other is smaller than«m . When«,«m , the
cooling rate decreases as the coefficient of performance
creases. It is thus clear that the region of«,«m is not opti-
mal for a harmonic quantum Brayton refrigeration cyc
Consequently, the optimal region of the coefficient of perf
mance should be

«m<«,« r . ~23!

When a quantum Brayton refrigeration cycle is operated
this region, the cooling rate will increase as the coefficien
performance decreases, and vice versa. This indicates th«m
is an important parameter for the harmonic quantum Bray
refrigeration cycle. It determines the allowable value of t
lower bound of the optimal coefficient of performance.

Analyzing Eq.~23! and Figs. 2–6, we can find further th
the optimal values of the power input should be

P<Pm , ~24!

0 5 10 15 20 25

0.00

0.04

0.08

0.12

0.16

0.20

R
*

P
*

kT
c
=1.0J

kT
c
=0.9J

R
*

max

P
*

m

FIG. 4. The dimensionless cooling rateR* versus the dimen-
sionless power inputP* . The values of the relevant parameters a
the same as those used in Fig. 2.

FIG. 5. The dimensionless rate of entropy productions*
5kThs/(2avc) versus the coefficient of performance«. The val-
ues of the relevant parameters are the same as those used in F
05611
e-

.
-

n
f

n
e

and that the optimal ranges of the ‘‘temperatures’’ of t
working substance in states 2 and 4 in the two consta
frequency processes should be

b2m>b2.bc ~25!

and

b4m<b4,bh , ~26!

where the values ofPm , b2m , and b4m can be calculated
from Eqs.~19!, ~20!, and~22! and have been listed in Tabl
I. Using Eqs.~2!, ~3!, ~25!, and~26!, we can obtain the op-
timal ranges of the lowest and highest ‘‘temperatures’’b1
and b3 of the working substance in the two constan
frequency processes, respectively, as

b1m5b4mv2 /v1<b1,bhv2 /v1 ~27!

and

b3m5b2mv1 /v2>b3.bcv1 /v2 . ~28!

The above results clearly show thatPm , b1m , b2m , b3m ,
andb4m are also several important performance parame
for a harmonic quantum Brayton refrigeration cycle and E
~24!–~28! provide several significant criteria for the selectio
of optimaly operating conditions. In addition, using Eq
~16!, ~17!, ~22!, and~23!, one can find that the timest1 and

. 2.

0

1
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3

4

β i
/β

j

ε

β
2
/ β

c

β
4
/ β

h

0 ε
r

FIG. 6. The b4 /bh-« and b2 /bc-« characteristic curves
The values of the relevant parameters are the same as those u
Fig. 2.

TABLE I. Optimal parameters at the maximum cooling rate f
given Tc /Th , vc /vh , andq520.5.

Tc /Th vc /vh T2m /T4m Rmax «m Pm sm

0.48 0.4 0.08 0.1948 0.0754 2.5826 1.127
0.49 0.07 0.1709 0.0779 2.1943 0.955

0.50 0.4 0.09 0.2001 0.0777 2.5825 1.190
0.49 0.08 0.1767 0.0850 2.0883 0.955

0.52 0.4 0.10 0.2070 0.0800 2.5818 1.263
0.48 0.09 0.1828 0.0878 2.0824 1.009
7-5
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t2 spent on the two constant-frequency processes of
cycle should be controlled to satisfy the following cond
tions:

t1>t1m ~29!

and

t2>t2m , ~30!

where

t1m5
1

2aeqbcv1~ebcv121!
lnF ~eb2mv121!~ebcv12eb4mv2!

~eb4mv221!~ebcv12eb2mv1!G
and

t2m5
1

2aeqbhv2~ebhv221!
lnF ~eb4mv221!~ebhv22eb2mv1!

~eb2mv121!~ebhv22eb4mv2!G .
If not, the quantum refrigeration cycle would not be oper
ing in the rational region.

Figures 3–6 show that the power inputP, rate of entropy
productions, and temperature ratiob2 /bc are monotoni-
cally decreasing functions of the coefficient of performan
«, while the other temperature ratiob4 /bh is a monotoni-
cally increasing function of the coefficient of performance«.
The cooling rateR is not a monotonic function of the powe
input P. When b25bc and b45bh , «5« r , R50, P50,
ands50. In such a case, the refrigerator attains its maxim
coefficient of performance, but its cooling rate is equal
zero so that it loses its refrigeration role.

VI. PERFORMANCE CHARACTERISTICS
AT HIGH TEMPERATURES

When the temperatures of the two heat reservoirs are
enough, i.e.,bv!1, the results obtained above can be si
plified. For example, Eqs.~16!, ~17!, and ~19!–~22! can be
simplified, respectively, as

t15
1

2abcv1
lnFb2~b4v22bcv1!

b4v2~b22bc!
G

5
1

2abcv1
lnFb2~b12bc!

b1~b22bc!
G , ~31!

t25
1

2abhv2
lnFb4~bhv22b2v1!

b2v1~bh2b4! G
5

1

2abhv2
lnFb4~bh2b3!

b3~bh2b4!G , ~32!

R5
b4v22b2v1

b2b4v2~ t11t2!
, ~33!

P5
~v22v1!~b4v22b2v1!

b2b4v1v2~ t11t2!
, ~34!
05611
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s5
~b4v22b2v1!~bhv22bcv1!

b2b4v1v2~ t11t2!
, ~35!

and

2abct2
bcb2n2~n22n1!

~b22bc!~n2b22n1bc!

1n2b2 lnS n2b22n1bc

n2b22n2bc
D50. ~36!

Using Eqs.~13!, ~31!–~33!, and~36!, we can generate the
R* -« characteristic curves for givenbh , bc , vh , andvc ,
as shown in Fig. 7, where the parameterskTh5500J, kTc
5400J, vc52.0J ~dashed curve!, 3.0J ~dash-dotted curve!,
4.0J ~solid curve!, and vh56.0J are adopted. It is clearly
seen from the curves in Fig. 7 that at high temperatures
R* -« curves of an irreversible harmonic quantum Brayt
refrigeration cycle are different from those of the refriger
tion cycle at low temperatures. The cooling rateR decreases
monotonically as the coefficient of performance« increases.
When« r'1, theR* -« curve is approximately a straight line
i.e., the cooling rate is approximately a linearly decreas
function of the coefficient of performance. When the con
tion « r'1 is not satisfied, theR* -« curve is convex for« r
.1, while theR* -« curve is concave for« r,1. When«50,
the cooling rate attains its maximum valueRmax. Using Eqs.
~33! and ~36!, one can obtain the maximum cooling rate a

Rmax5
~n22n1!v1m

Tc /~2av1m!ln@~Tc2n1v1m!/~Tc2n2v1m!#
,

~37!

where v1m52(Tc2n2v1m)(Tc2n1v1m)ln@(Tc2n1v1m)/(Tc
2n2v1m)#/@Tc(n22n1)#. In this case, an infinite power input i

FIG. 7. The dimensionless cooling rateR* versus the coefficient
of performance« in the high-temperature limit. Dashed (vc

52.0J), dash-dotted (vc53.0J), and solid (vc54.0J) curves are
presented for the parameterskTh5500J, kTc5400J, vh56.0J,
andq520.5. The parameters (Rm)h and («m)h represent the cool-
ing rate and coefficient of performance at the maximum (R«), re-
spectively.
7-6
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required. This shows that the cooling rate of a practical
frigerator cannot approachRmax. Thus, the states ofR
5Rmax and «5« r are two limit states and the refrigeratio
cycle cannot be operated in these two states, so that co
eration must be given to both the coefficient of performan
and the cooling rate. Equations~13!, ~31!–~33!, and~36! just
provide some theoretical bases for the question of how
choose the two parameters reasonably. For example, w
we pay equal attention to both the coefficient of performa
f-
re
o
la
th
a

05611
-

id-
e

to
en
e

« and the cooling rateR, the multiplication«R may be taken
as an objective function@20#. The cooling rate (Rm)h and
coefficient of performance («m)h at the maximum«R condi-
tion can be calculated, as shown in Fig. 7. It is clearly se
directly from the curves in Fig. 7 that there is a relatio
(«m)h /« r'(Rm)h /Rmax'1/2 for « r51.

On the other hand, using Eqs.~2!, ~3!, ~31!, ~32!, and~1!,
Eqs.~13!, ~33!, and~34! at high temperatures can be writte
as
ere with
uence of
l Brayton
rmance,
«5
T22T1

~T32T4!2~T22T1!
, ~38!

R5
T22T1

Tc /~2av1!ln@~Tc2T1!/~Tc2T2!#1Th /~2av2!ln@~T32Th!/~T42Th!#
, ~39!

and

P5
~T32T4!2~T22T1!

Tc /~2av1!ln@~Tc2T1!/~Tc2T2!#1Th /~2av2!ln@~T32Th!/~T42Th!#
. ~40!

It is of interest to compare the expressions for the coefficient of performance, cooling rate, and power input obtained h
those derived from a classical Brayton refrigeration cycle using an ideal gas as the working substance. When the infl
finite-rate heat transfer between the working substance and the heat reservoirs on the performance of a classica
refrigeration cycle is considered and the heat transfer is assumed to obey a Newtonian law, the coefficient of perfo
cooling rate, and power input of the classical Brayton refrigeration cycle are given by

«5
Qc

W
5

T22T1

~T32T4!2~T22T1!
, ~41!

R5
Qc

t
5

T22T1

~T22T1!/@UCAC~DC!#1~T32T4!/@UHAH~DH!#
, ~42!

P5
W

t
5

~T32T4!2~T22T1!

~T22T1!/@UCAC~DC!#1~T32T4!/@UHAH~DH!#
, ~43!
on

n
re-
o

assi-
the
in
har-

ith
e

where

DC5@~Tc2T1!2~Tc2T2!#/ ln@~Tc2T1!/~Tc2T2!#

and

DH5@~T32Th!2~T42Th!#/ ln@~T32Th!/~T42Th!#

are the log mean temperature differences@21#. It is clearly
seen from Eqs.~38!–~43! that at high temperatures the coe
ficient of performance of a harmonic quantum Brayton
frigeration cycle consisting of two adiabatic and tw
constant-frequency processes is identical with that of a c
sical Brayton refrigeration cycle using an ideal gas as
working substance, and the cooling rate and power input
-

s-
e
re

very similar to those of a classical Brayton refrigerati
cycle. If Tc /(2av1)51/(UCAC) and Th /(2av2)
51/(UHAH) are chosen, Eqs.~39! and~40! are identical with
Eqs. ~43! and ~43!, respectively. This shows clearly that, i
the high-temperature limit, a harmonic quantum Brayton
frigeration cycle consisting of two adiabatic and tw
constant-frequency processes may be equivalent to a cl
cal Brayton refrigeration cycle using an ideal gas as
working substance@22#. Thus, such a cycle as described
the present paper may be reasonably referred to as the
monic quantum Brayton refrigeration cycle.

VII. DISCUSSION

It is of interest to compare the results obtained here w
those in Ref.@9#. It can be clearly seen that there are som
7-7
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similarities and essential differences for the quantum Br
ton refrigeration cycles using harmonic oscillator and s
systems as the working substance. For example, the ex
sions for the amounts of heat exchangeQc and Qh , work
input W, and the coefficient of performance«, of the quan-
tum Brayton refrigeration cycle working with harmonic o
cillators are very similar to those of the quantum Brayt
refrigeration cycle working with spin-1/2 systems@9#. As
another example, when the quantum Brayton refrigera
cycles working with two different working substances a
operated at very low temperatures, the coefficient of per
mance and cooling rate decrease quickly as the tempera
of the low-temperature reservoir is lowered. However,
cause the harmonic oscillators and spin-1/2 particles o
different statistical laws, the properties of the two kinds
systems are themselves very different under general circ
stances, so that there are some essential differences fo
performance characteristics of the quantum Brayton ref
eration cycles working with two different working sub
stances. For example, the quantum Brayton refrigera
cycles working with harmonic oscillators cannot be opera
across the critical temperatureT0 of BEC of the harmonic
oscillator system, because an isentropic or isobaric pro
from the region ofT.T0 to that ofT,T0 is impossible for
a Bose system@23#, while the restrictive condition does no
exist for quantum Brayton refrigeration cycles working wi
spin-1/2 particles. Even at high temperatures, the heat tr
fer laws are different and may be expressed, respectively
dQ52@1/(b8v)#dv for harmonic oscillators anddQ5
2(b8v/4)dv for spin-1/2 particles.

In order to understand more deeply the performance
the quantum refrigeration cycle, it is significant to plot t
1/«-1/R* curve of an irreversible harmonic quantum Bra
ton refrigeration cycle at high temperatures, as shown in
8. It is seen from Fig. 8 that the characteristic curve is sim
to those based on finite-time thermodynamic models@24–27#
in which finite-rate heat transfer is the sole irreversibility.
the heat leak losses in the refrigeration cycle are further c
sidered, one can generate a 1/«-1/R* characteristic curve
which is similar to those obtained in Refs.@27#, @28#, in
which finite-rate heat transfer and heat leak are conside
simultaneously.

VIII. CONCLUSIONS

An important cycle model of the quantum refrigeratio
cycle using many noninteracting harmonic oscillators as
working substance and consisting of two adiabatic and
constant-frequency processes has been established. Th
frigeration cycle may be reasonably referred to as the h
monic quantum Brayton refrigeration cycle. It is one of t
three important quantum thermodynamic cycle models wo
ing with harmonic oscillators. On the basis of statistical m
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