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An irreversible model of a quantum refrigeration cycle working with many noninteracting harmonic oscil-
lators is established. The refrigeration cycle consists of two adiabatic and two constant-frequency processes.
The general performance characteristics of the cycle are investigated, based on the quantum master equation
and the semigroup approach. The expressions for several important performance parameters such as the
coefficient of performance, cooling rate, power input, and rate of entropy production are derived. By using
numerical solutions, the cooling rate of the refrigeration cycle subject to finite cycle duration is optimized. The
maximum cooling rate and the corresponding parameters are calculated numerically. The optimal region of the
coefficient of performance and the optimal ranges of temperatures of the working substance and times spent on
the two constant-frequency processes are determined. Moreover, the optimal performance of the cycle in the
high-temperature limit is compared with that of a classical Brayton refrigerator working with an ideal gas. The
results obtained here show that in the high-temperature limit a harmonic quantum Brayton cycle may be
equivalent to a classical Brayton cycle.
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I. INTRODUCTION [2,3,5,4 consisting of two isothermal and two adiabdiie.,
constant-populatignprocesses, the Ericsson cycle consisting
The harmonic oscillator and spin systems are two typicabf two isothermal and two constant-frequency processes
mechanical systems in quantum physics and have bedd,4], the Brayton cycle consisting of two adiabatice.,
widely applied to all kinds of practicaly physical problems constant-populationand two constant-frequency processes,
since the beginning of quantum theory. Recently, several aletc. The quantum Carnot cycle, Ericsson cycle, and Brayton
thors have intensively investigated the performance chara&ycle are obviously three models of the most important quan-
teristics of quantum thermodynamic cycles working with tum thermodynam_ic cycles working with harmonic oscillator
harmonic oscillator systenfd—6] or spin system§7—12, systems. The optimal performance of the quantum Carnot

based on the quantum master equation and the semigro@cle and Ericsson cycle has been investigated and many
approach. Many meaningful conclusions have been obtaine !gnlflcgnt results have been obtairjée 6. However, so far
e optimal performance of the quantum Brayton refrigera-

Quantum thermodynamic cycles have become an interesti bn cvele working with harmonic oscillator svstems has
research subject. Investigation of the performance of quan- Y ng o ator Sy

) : rarely been studied. Thus, it is of great significance to study
tum thermodynamic cycles has been a major source of the@

d ic insiaht and led t tion bet bst e optimal performance of this class of quantum thermody-
modynamic insight and led to a connection between abstract, ;e cycles. It is also worthwhile to point out that a similar

theory and realizable physical phenomena. Quantum modelg e model, which consists of two adiabatie., constant-
of thermodynamic cycles show a remarkable similarity t05|arization and two isomagnetic field processes, has been
classical thermodynamic cycles obeying macroscopic dyyseq to analyze the performance of an irreversible quantum
namics. The investigation of them will be helpful to deeply refrigeration cycle working with many noninteracting spin-
understand the relationship and distinguish between the/> systems, and many significant results have been obtained
quantum and classical thermodynamic cycles. [9]. Because the cycle working substance adopted here is
Like classical thermodynamic cycles, quantum thermodydifferent from that used in Ref9], it may be expected that
namic cycles using harmonic oscillator or spin systems as theome results different from those derived in &l will be
working substance may have different typical cycle modelsobtained.
For example, when harmonic oscillator systems are used as In this paper, the optimal performance of a quantum re-
the working substance, we have the quantum Carnot cycl&igeration cycle working with many noninteracting har-
monic oscillators and consisting of two adiabatic and two
constant-frequency processes is investigated, based on the
* Author to whom correspondence should be addressed. Electronidynamical semigroup approach of the quantum theory of
address: jcchen@xmu.edu.cn open systems. The general expressions for several important
"Mailing address. parameters, such as the coefficient of performance, cooling
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wherew>0 is the frequency of the oscillatgg’ = 1/T, and

s 1 Q\\'\’\"W -k T is the absolute temperature in energy units. Using(EQ.
o \\\ii""‘”- e and Fig. 1, one can obtain the following relations:
1 1 ] 2 Biw1=B4w; 2
" n k and
FIG. 1. Thew-n diagram of an irreversible harmonic quantum Borw1= Baw;. 3)

refrigeration cycle, where is in joules.

rate, power input, and rate of entropy production, are delt is thus clear that for a harmonic quantum Brayton refrig-
rived. The important performance parameters are optimizedration cycle there is an important relatigq/B,= B4/83,
and the general performance characteristics of the cycle akghich restricts the temperatures of the four states 1, 2, 3, and
analyzed. The optimaly operating regions of some important in Fig. 1. It is of interest to note that this important relation
performance parameters of the cycle are determined. is identical with that of a Brayton refrigeration cycle working
with an ideal gas.

For a harmonic oscillator system, the Hamiltonian is de-

Figure 1 shows schematically the-n diagram of an ir-  Scribed in the following forni3,14]:
reversible quantum refrigeration cycle operating between
two heat reservoirs at temperaturgs and T.. The refrig- A(t) = w(t)N=w(t)a'a, (4
eration cycle consists of two adiabatic and two constant-
frequency processes. The working substance of the cycle is at . . . L
composed of many noninteracting harmonic oscillators. FotVheérea' and a are the bosonic creation and annihilation
convenience, throughout this paper “temperature” will refer operators andN=4'a is the number operator. The internal
to B rather thanT. In the cycle, two adiabatic processes areenergy of the harmonic oscillator system is of the expecta-
connected by two constant-frequency processesw; and  tion value of the Hamiltonian, i.e.,
® = w, With w,>w,. The two constant-frequency processes
in the harmonic quantum refrigeration cycle correspond to " <
the two constant—%ressure procgesses in :)a/gas Braytgn refrig- E=(R)=o®(N)=w(®)n, ®)
eration cycle, while the two adiabatic processes in the cycle .
are identical to two processes where the populations of theshere(N)=n. For a harmonic quantum refrigerator, the in-
harmonic oscillatorsn=n; and n, are kept constanf3].  ternal energy of the working substance may be changed by
Thus, the quantum refrigeration cycle shown in Fig. 1 maychanging either the frequency or the population of the oscil-
be referred to as the harmonic quantum Brayton refrigeratiomators. The cycle operation is followed by changes in the
cycle. ) observables of the working substance. Based on the semi-

In the two constant-frequency processes, the oscnlatorgroup formalisn[3,15], the equation of motion of an opera-
are, respectively, coupled to the heat reservoirs at consta?ct)r % in the Heisenberd bi L

g picture is given by the quantum

temperatureg3= B, and 8= 8., and the amounts of heat . !
exchange between the workirﬁg substance and the heat res31aster equat|or[3,1_2315—.17 (throughout this paper we
adoptz =1 for simplicity), i.e.,

voirs are represented 1§y, andQ. . Due to the finite rate of
heat transfer between the working substance and the heat

reservoirs, the temperaturgs,, B,, B3, and B, of the e A OX N

working substance in states 1, 2, 3, and 4 are different from a:'[H'X]jL T Lo(X), ©
those of the heat reservoirs and there is a relaior 3,
=B.>PBnr=B4>B3. For a harmonic oscillator system, ~ N EG A At S o
Bose-Einstein condensatiéBEC) must be considered. Con- Where Lp(X)=Z,7,(V [ X,V +[V,.X|V,) is a dissipa-
sequently, the lowest temperatud of the working sub- tion term and originates from the thermal coupling between
stance must be restricted to being higher than the criticdl’® working substance and the heat reservpir,are phe-

II. AQUANTUM CYCLE MODEL

temperature of BEC of the harmonic oscillators. nomenological positive coefficients, aMj, andV,, are op-
erators in the Hilbert space of the system and are Hermitian
lll. THE COEFFICIENT OF PERFORMANCE conjugates. For a harmonic oscillator systéf/ri;, and V,

AND WORK INPUT may be chosen to be the bosonic annihilation and creation

Based on statistical mechanics, the population of the oseperator’ anda. SubstitutingX in Eq. (6) by H and using
cillators n can be obtained from the Bose-Einstein distribu-Eq. (5), one obtains the rate of change of the internal energy
tion [13], i.e., as
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dE d . IR . IV. CYCLE PERIOD
dat ﬁ<H>= gt +(Lo(H)) In order to analyze further the optimal performance of the
harmonic quantum Brayton refrigeration cycle, the period of
) d_w+ o(Lp(R))= nd_“’ n w@ ) the cycle has to be calculated. For this end, we begin to solve
dt D dt dt’ the equation of motion that determines the time evolution of

the populations of the harmonic oscillators. Substitutiig
It is thus clear that Eq(7) is the time derivative of the first 3, H, andX=N into Eq. (6), one can prové3] that
law of thermodynamic$3,16—19 for a harmonic oscillator

system. Comparing Eq7) with the differential form of the dn
first law of thermodynamicsgdE/dt=dW/dt+dQ/dt, one = —2ae(ef -1)n-1], (14
can identify the instantaneous power and heat fl848,19
as wherea>0, —1<q<0, and B, o, andn are, in general,
N dependent on timg3]. The explicit quantum mechanical na-
p— d_VV=<ﬁ> =nd_w ®) ture of a refrigerator working with harmonic oscillators is
dt ot dt manifested by the dual characterwfi.e.,iw (A=1) defines
the energy level structure of the refrigeration cycle ani
and the frequency of the oscillators so that ! defines an intrin-
sic time scale. This implicitly assumes an instantaneous re-
dQ dn sponse of the heat reservoir to changes in the frequency

E:<LD(H)>: Crre (99 and the time duration of a process should be long enough so
that resonance conditions are established instantaneously.

. ' This means that the time duration for each process has to be
Using Egs.(1) and(9), one can find that the amounts of much larger than the intrinsic time scal8]. Thus, the

heat eXChaﬂge in the two constant-frequency processes of t}Eﬁange ofw with time is small. This point can also be di-
cycle are given, respectively, by rectly obtained from Eq(1).

2 n Using Eq.(14), one can obtain the expression for the time
2 ;
Qc:Q]_z:f dQ: f wldn: wl(nZ_nl) evolution as
1 ny

wy(efae2—efoen) =5 f " Bf - : (15
T (ePa2—1)(ePov1—1) (10 2a Jn, e¥[(e"=1)n—1]

wheren; andn; are the initial and final values af along a
given pathn(B',w). Equation(15) is a general expression of
the time evolution for a harmonic oscillator system coupled
4 ny .
Qh:Q34:J dQ=f w,dn with a hegt bath. .
3 n, According to Eq.(15), one can calculate the time of the
heat-exchange process between the working substance and
(11) the heat reservoir. Substituting(,@’)=1/(eﬂ'“’l— 1), B
=Bc, Nj=n;{(B1,w1), andn;=n¢(B,,w4) into Eq.(15) and

using Eqgs.(2) and(3), we can obtain the time spent on the
When a cycle is finished and the working substance reconstant-frequency process with= w; as

turns to the original state, the change of internal energy is

and

wz(eﬁzwl—eﬁwz)
- wZ(nl_ n2) - (eﬁ4w2_ l)(eﬁzwl_ 1) .

equal to zero, i.e$dE=0. The work input per cycle ¥V 1 By d(e? 1)
=fndw=—-$FdQ=—$wdn. Using Eqgs.(10) and (11), one t;= B wlf - —=C,InA,
can obtain the work input per cycle as 2a€1 J g (ef 1-1)(efevr—ef 0r) 16

W= |Qh+ QC| - (w2 wl)(nz nl) where A= (eﬂZ“’l— 1) (eﬂc“’l— eﬁ4"’2)/(eﬁ4‘”2— 1) (eﬁc“’l
(wp— wq)(ePa02— eP201) —ef221) and C,=1/[2ae%“1(ehe?1—1)]. Similarly, sub-
- (ePaz—1)(efeor—1) - (12) stitutingn(B') = 1/(e# “2— 1), B= By, ni=ni(B3,w,), and
n{=n¢(B,4,w,) into Eq. (15) and using Eqs(2) and(3), we
From Egs.(10) and (12), we can derive the coefficient of can obtain the time spent on the constant-frequency process
performance of a quantum Brayton refrigeration cycle work-With = w, as
ing with harmonic oscillators as

t

1 Ba d(ef 2
f :Czln B,

L (13 2" 2%z | g, (ef w2 1)(ePror—ef o2
W Wy~ W1 (17)

&€
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where  B= (ef4®2—1)(efr@2— ef2¢1)/(eF201— 1) (ePnw2 0.207 ——KT.=1.0
—ePa92) and C,=1/2ae%nv2(efnv2—1)]. It can be seen Rimede — — -KT =09J
from Eq. (9) that in two adiabatic processes the amounts of 0164 °
heat exchange between the working substance and the sur-
roundings are equal to zero and the times spent on the two 1o-
adiabatic processes are negligibtE2] compared with the 0.
constant-frequency processes. Consequently, the cycle period &
is given by 0.087
T:t1+t2:C1|nA+C2|n B. (18) 0.04
V. OPTIMIZATION ON PERFORMANCE PARAMETERS 0.00+—% : : : .
0 €
In addition to the coefficient of performance, the cooling " € '

rate, power input, and rate of entropy production are also

three of the important parameters often considered in the FIG. 2. The dimensionless cooling raR¥ =R/(2aw) versus
optimal design and theoretical analysis of refrigerators. Usthe coefficient of performance for the parametersT,=2.00, wy,
ing Eqs.(10)—(12) and(18), we can find that the expressions ~2:09, ©.=1.0J, andg=—0.5. Dashed and solid curves corre-
for the cooling rateR, power inputP, and rate of entropy SPond fo the cases &f.=0.9J andkT,=1.00, respectively.

productiono are, respectively, given by plotted by using Eqs(13) and (19—(22), as shown in Figs.
2-6, where R*=R/(2aw;), P*=P/(2aw.), and o*

Q. wl(eﬂwz_eﬁzwl) - > \ ) ]
R= —°— =kT,o/(2aw.) are, respectively, the dimensionless cooling
7 (ef2v1-1)(ef42—1)(C,INA+C;InB)’ rate, power input, and rate of entropy production. In these
(19 figures, the parametelsT,=2.0J, kT.=1.QJ, wy=2.05),
» ® w:=1.0J, andg=—0.5 are adoptefl19].
p= V_V: (w— wq) (efs2—ef2n) It is seen from the curves in Fig. 2 that there exists a
T (ef2°1-1)(ef4*2—1)(C;InA+C,InB)’ maximum cooling ratdR,,,, and a corresponding coefficient
(200 of performances,, for a set of given parametecs By, Be,
and wp, andw,.. Obviously, for different given parameters, the
maximum cooling raté,,,, and corresponding coefficient of
AS (Brwo— Bewy)(ePaw2— gh201) performancee, will be different. For example, for given
o=—= w.lwy, the larger is the temperature rafigQ/ Ty, of the two

Bowy__ Bawy _ :
T (e 1)(eR2=1)(CaIn AT CaInB) 1) heat reservoirs, the larger are the maximum cooling rate and

corresponding coefficient of performance; for giveg/Ty,,
With the help of the above equations, one can optimize thesée lower is the frequency ratie./»y, of the oscillators, the
important performance parameters of the harmonic quantud@rger is the maximum cooling rate while the lower is the

Brayton refrigeration cycle. corresponding coefficient of performance, as indicated in
It is clearly seen from Eqg13) and(19) that the cooling ~ Table I.
rate is zero whes=0 ors=¢,, wheres, = w./(wp— w,) is On the other hand, it is also seen from the curves in Fig.

the maximum coefficient of performance of a harmonic2 that whenR<R,, there are two different coefficients of
guantum Brayton refrigeration cycle and the frequencigs
and wy, are, respectively, the upper and lower bounds of the ——KT =1.0J 2,
frequenciesw; and w, of the oscillators. This implies that, \- - -kT_=0.9J
when the coefficient of performance is equal to some value,
the cooling rate has a maximum. Using E49) and the
extremal conditiorvR/dw,=0, we can obtain the following
equation:

5-

154

T (np—ny)efeer
CiB. M [ny(efe"1—1)—1][ny(eP*1—1)—1]
(q+1)eferi—qg
 (ePer—1)

In A] =0. (22

Equation(22) gives the optimal relation betwegh(w,) and €

Ba(w,) for givenq, By, Be, @, and w., but it is too

complicated to yield a simple analytical solution. However, F|G. 3. The dimensionless power inpRt = P/(2aw.) versus
for givenq, Bn, B¢, o, andw;, theR* —¢, P* —¢, R* the coefficient of performance The values of the relevant param-
—P*, 0" —¢, and B;/Bj—e characteristic curves can be eters are the same as those used in Fig. 2.
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0.20 —— KT =1.0J 4]
R [
T - - -kT=0.9J
0.16 1
3
0.12+ —
o &
0.08+ B/B
0.04 L
' BB
0.00 N T T T T T 0 !
0P 5 10 15 20 25 0 §
P €
FIG. 4. The dimensionless cooling ra& versus the dimen- FIG. 6. The B,/By-¢ and B,/B.-¢ characteristic curves.
sionless power inpuP*. The values of the relevant parameters areThe values of the relevant parameters are the same as those used in
the same as those used in Fig. 2. Fig. 2.

and that the optimal ranges of the “temperatures” of the
working substance in states 2 and 4 in the two constant-
&requency processes should be

performance for a given cooling ral® where one is larger
thane,, and the other is smaller than,. Whene<e,,, the
cooling rate decreases as the coefficient of performance d
creases. It is thus clear that the regioreef ¢, is not opti- Bom= o> B (25)
mal for a harmonic quantum Brayton refrigeration cycle. 2m=— P2 Pe

Consequently, the optimal region of the coefficient of perfor-5nq

mance should be
Bam=Ba<Bhn, (26)

Em=E€<&r. (23 \where the values oP.,, Bom, and B4, can be calculated
from Egs.(19), (20), and(22) and have been listed in Table
When a quantum Brayton refrigeration cycle is operated id- Using Egs.(2), (3), (25), and(26), we can obtain the op-
this region, the cooling rate will increase as the coefficient ofimal ranges of the lowest and highest “temperaturg”
performance decreases, and vice versa. This indicates,that and B3 of the working substance in the two constant-
is an important parameter for the harmonic quantum Braytorequency processes, respectively, as

refrigeration cycle. It determines the allowable value of the B Jon< / 5
lower bound of the optimal coefficient of performance. 1m= Bamw2/ 01< 1< Brwz/ o (27)
Analyzing Eq.(23) and Figs. 2—6, we can find further that and
the optimal values of the power input should be
Bam= Bamw1/ w2= B3> Pewr] w;. (28

<
P=Pum. (24) The above results clearly show thf,, Bim, Boms Bam:

and B4, are also several important performance parameters
for a harmonic quantum Brayton refrigeration cycle and Egs.
(24)—(28) provide several significant criteria for the selection
of optimaly operating conditions. In addition, using EQs.
(16), (17), (22), and(23), one can find that the times and

TABLE |. Optimal parameters at the maximum cooling rate for

o : givenT. /T, wc/wy,, andg=—0.5.
Te/Th oclon Tom!Tam Rmax €m Pm Om

0.48 0.4 0.08 0.1948 0.0754 2.5826 1.1278

0.49 0.07 0.1709 0.0779 2.1943 0.9554

0.50 0.4 0.09 0.2001 0.0777 2.5825 1.1909

0.49 0.08 0.1767 0.0850 2.0883 0.9558

FIG. 5. The dimensionless rate of entropy productiofi 0.52 0.4 0.10 0.2070 0.0800 2.5818 1.2639

=kT,o/(2aw;) versus the coefficient of performanee The val- 0.48 0.09 0.1828 0.0878 2.0824 1.0094

ues of the relevant parameters are the same as those used in Fig=2-
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t, spent on the two constant-frequency processes of the

. . . R |
cycle should be controlled to satisfy the following condi- sf_
tions: == =1
£>1
t =ty (29
:
and o
‘\
N\
t2>t2my (30) S
Q\ \
where NN
~
1 (eﬁmel_l)(eﬁcwl_eﬁmwz) 0 N .
tm= S peWeor(eheor— 1) 1| (Pamoz— 1) (ePow1— gPamon) 0 € )/e, 1
and € /g
Bario o By FIG. 7. The dimensionless cooling rd®& versus the coefficient
o= 1 (ePam@2—1) ("2 —el2m®1) of performancee in the high-temperature limit. Dashedw{
M aedhoz(ghhoz—1) | (eFam@1—1)(ePnwz—efam@2) | =2.00), dash-dotted ¢;=3.0J), and solid (,=4.0J) curves are

presented for the parametekd,=500], kT,=400], w,=6.0J,
If not, the quantum refrigeration cycle would not be operat-andq=—0.5. The parameters(,), and (em), represent the cool-
ing in the rational region. ing rate and coefficient of performance at the maximuRa)( re-
Figures 3—6 show that the power ingif rate of entropy ~ SPectively.
production o, and temperature rati@, /B, are monotoni-

cally decreasing functions of the coefficient of performance _ (Bawa— Bowy)(Brwr— Bewy) 35
g, while the other temperature ratje, /By, is a monotoni- 7= BaBawiwy(ti+1)) ’ 39
cally increasing function of the coefficient of performarnce
The cooling rateR is not a monotonic function of the power and
input P. When B,=8. and B,=8, e=¢,, R=0, P=0,
ando=0. In such a case, the refrigerator attains its maximum 28 r— BcBanz(n—nyg)
coefficient of performance, but its cooling rate is equal to Bet (B2—Bc)(NyB—Nn1Be)
zero so that it loses its refrigeration role.
(nzﬁz_ nlﬁc) B
+n,8; In| ———|=0. (36)
VI. PERFORMANCE CHARACTERISTICS N2B2—N2B¢

AT HIGH TEMPERATURES .
Using Egs.(13), (31)—(33), and(36), we can generate the

When the temperatures of the two heat reservoirs are higR* -¢ characteristic curves for give8;,, B., wn, andw,,
enough, i.e.Bw<1, the results obtained above can be sim-as shown in Fig. 7, where the parametki&,=500], kT,
plified. For example, Eqg16), (17), and (19)—-(22) can be  =40QJ, w.=2.0J (dashed curve 3.QJ (dash-dotted curye
simplified, respectively, as 4.Q] (solid curve, and w,=6.0] are adopted. It is clearly

seen from the curves in Fig. 7 that at high temperatures the

- 1 0 B2 Bawz— Bewy) R*-g curves of an irreversible harmonic quantum Brayton
1 2aB.0, Baws(Bo—Be) refrigeration cycle are different from those of the refrigera-
tion cycle at low temperatures. The cooling r&a&lecreases
_ 1 n '32(ﬂ1_'86)} (31) monotonically as the coefficient of performancéncreases.
2aBcw; | B1(Ba—Bo) ] Whene,~1, theR*-¢ curve is approximately a straight line,
i.e., the cooling rate is approximately a linearly decreasing
. 1 Ba(Brwo— Bowq) function of the coefficient of performance. When the condi-
2= _ tion ,~1 is not satisfied, th&®*-& curve is convex fok
2aBpw wq( ) r ) r
Prevz Pa@1(Bn= B >1, while theR*-¢ curve is concave fog,<1. Whene=0,
1 Ba(Brn—B3) the cooling rate attains its maximum valRg,.,. Using Egs.
= In , (32 . : .
2aBpw, | Ba(Br—Ba) (33) and (36), one can obtain the maximum cooling rate as
Bawr— Brwy R = (N2—Ny) W1m
R BaBaodty 1) 33 e Tel 2o (Te= o (T~ o]’
p (@2= @) (Bawo— fo01) (39 Where w1n=2(Tc=N,01m) (Te= 101 IN[(Te—Nyorn)(Te
B2Bawiwy(ty+13) —nw1,) V[ Te(n,—ny)]. In this case, an infinite power input is
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required. This shows that the cooling rate of a practical ree and the cooling rat®, the multiplications R may be taken
frigerator cannot approacikR,,,. Thus, the states oR  as an objective functiofi20]. The cooling rate R,,), and
=Rna @and e =g, are two limit states and the refrigeration coefficient of performances(,)y, at the maximuntR condi-
cycle cannot be operated in these two states, so that consitlen can be calculated, as shown in Fig. 7. It is clearly seen
eration must be given to both the coefficient of performancedirectly from the curves in Fig. 7 that there is a relation
and the cooling rate. Equatio($3), (31)—(33), and(36) just  (e,)n/e;~(Rm)n/Rmax=1/2 fore, = 1.

provide some theoretical bases for the question of how to On the other hand, using Eq®), (3), (31), (32), and(1),
choose the two parameters reasonably. For example, whefys.(13), (33), and(34) at high temperatures can be written
we pay equal attention to both the coefficient of performances

B T,—T, s
S T T (- Ty 9
T,—T,
R= : (39
T/ (2aw)IN[(Te—=T)/N(T—To) ]+ Th/(2awy)IN[(T3—Tp)/(T4—Tp)]
and
P (T3— Ty —(T,—Ty) 40)

T T/ (2aw)IN[(Te— T/ (Te— T 1+ Tn/(2awx)IN[(Ta— T/ (T4— T

It is of interest to compare the expressions for the coefficient of performance, cooling rate, and power input obtained here with

those derived from a classical Brayton refrigeration cycle using an ideal gas as the working substance. When the influence of
finite-rate heat transfer between the working substance and the heat reservoirs on the performance of a classical Brayton
refrigeration cycle is considered and the heat transfer is assumed to obey a Newtonian law, the coefficient of performance,
cooling rate, and power input of the classical Brayton refrigeration cycle are given by

T,—T
o= 21 , (42)
W (T3=Tg)—(T2—Ty)
T,—T
r= e 22 , (42)
7 (Ta=T)/[UcAc(D) ]+ (Ta=Ty/[UyAu(Dy) ]
b w_ (T3=T4)—(T2—Ty) 43
7 (To=T/[UcA(D) ]+ (T3=TH)/[UpAu(Dyu) ]’
|
where very similar to those of a classical Brayton refrigeration
cycle. If T /(2aw;)=1/(UcAc) and T,/(2awy)
De=[(Te=T) = (Te=T)UIN[(T—=T/NT—T>)] =1/(UyAy) are chosen, Eq$39) and(40) are identical with
Egs. (43) and(43), respectively. This shows clearly that, in
and the high-temperature limit, a harmonic quantum Brayton re-
frigeration cycle consisting of two adiabatic and two
Dy=[(Ts=Th) = (T4= T IN[(T3=T)/(T4—Tp)] constant-frequency processes may be equivalent to a classi-

cal Brayton refrigeration cycle using an ideal gas as the
are the log mean temperature differen¢2g]. It is clearly ~ Wworking substancé22]. Thus, such a cycle as described in
seen from Eqs(38)—(43) that at high temperatures the coef- the present paper may be rg—:-ason_ably referred to as the har-
ficient of performance of a harmonic quantum Brayton re-Monic quantum Brayton refrigeration cycle.
frigeration cycle consisting Qf two adlal_)atlc and two VII. DISCUSSION
constant-frequency processes is identical with that of a clas-
sical Brayton refrigeration cycle using an ideal gas as the It is of interest to compare the results obtained here with
working substance, and the cooling rate and power input arghose in Ref[9]. It can be clearly seen that there are some
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similarities and essential differences for the quantum Bray- 10 -
ton refrigeration cycles using harmonic oscillator and spin
systems as the working substance. For example, the expres-
sions for the amounts of heat excham@g and Q;,, work

input W, and the coefficient of performaneg of the quan-

tum Brayton refrigeration cycle working with harmonic os-
cillators are very similar to those of the quantum Brayton
refrigeration cycle working with spin-1/2 systeni8]. As
another example, when the quantum Brayton refrigeration
cycles working with two different working substances are
operated at very low temperatures, the coefficient of perfor-
mance and cooling rate decrease quickly as the temperature 0 . . . .
of the low-temperature reservoir is lowered. However, be- 0 5 10
cause the harmonic oscillators and spin-1/2 particles obey .

different statistical laws, the properties of the two kinds of 1/R

systems are themselves very different under general circum- FIG. 8. The 14-1/R* characteristic curve of the cycle at high
stances, so that there are some essential differences for tpeegnper'au;res

performance characteristics of the quantum Brayton refrig- '

eration cycles working with two different working sub- chanics, the motion equation, and the semigroup formalism,
stances. For example, the quantum Brayton refrigeratiojve have analyzed the general performance characteristics of
cycles working with harmonic oscillators cannot be operatedhe harmonic quantum Brayton refrigeration cycle and de-
across the critical temperatufig of BEC of the harmonic  rived concrete expressions for several important parameters
oscillator system, because an isentropic or isobaric processch as the coefficient of performance, cooling rate, power
from the region ofT>T), to that of T<<Tj is impossible for  input, and rate of entropy production. By using numerical
a Bose systenfi23], while the restrictive condition does not solutions, the performances of the harmonic quantum Bray-
exist for quantum Brayton refrigeration cycles working with ton refrigeration cycle are optimized. Several optimal perfor-
spin-1/2 particles. Even at high temperatures, the heat trangnance characteristic curves are generated. The optimal oper-
fer laws are different and may be expressed, respectively, aging regions of some important performance parameters are
dQ=—[1/(8'w)]dw for harmonic oscillators andiQ=  determined. In general, the cooling rate is not a monotonic
—(B' wl4)dw for spin-1/2 particles. function of the coefficient of performance, and the optimal
In order to understand more deeply the performance ogoefficient of performance always decreases as the cooling
the quantum refrigeration cycle, it is significant to plot therate increases. However, in the high-temperature limit, the
1/e-1/R* curve of an irreversible harmonic quantum Bray- cooling rate is a monotonically decreasing function of the
ton refrigeration cycle at high temperatures, as shown in Figeoefficient of performance. Consequently, consideration
8. Itis seen from Fig. 8 that the characteristic curve is similamust be paid to both the coefficient of performance and the
to those based on finite-time thermodynamic mof&4s-27  cooling rate. In addition, it is suggested that in the high-
in which finite-rate heat transfer is the sole irreversibility. If temperature limit the coefficient of performance of a har-
the heat leak losses in the refrigeration cycle are further conmonic quantum Brayton refrigeration cycle is the same as
sidered, one can generate &-l/R* characteristic curve that of a classical Brayton refrigeration cycle, and the cool-
which is similar to those obtained in Ref27], [28], in  ing rate and power input may be equivalent to those of a
which finite-rate heat transfer and heat leak are considereglassical Brayton refrigeration cycle. To sum up, the results
simultaneously. obtained here can reveal the general performance character-
istics of a quantum Brayton refrigeration cycle using har-
VIIl. CONCLUSIONS monic oscillators as the working substance and will be help-
ful in understanding further the relationship and distinction

An important cycle model of the quantum refrigeration peyeen quantum and classical Brayton refrigeration cycles.
cycle using many noninteracting harmonic oscillators as the

working substance and consisting of two ad|abat|c and two ACKNOWLEDGMENTS
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